Нейросеть обучили определять пол человека по написанному тексту.
Коллектив ученых разработали метод, обучающий компьютер распознавать пол человека по написанному им тексту с точностью до 80 процентов. Научная разработка относится к области компьютерной лингвистики.
Многочисленные научные исследования показывают, что в письменном тексте неизбежно отражаются характеристики его автора – пол, психологические особенности, уровень образования. Речь является ценным психодиагностическим инструментом, который используют специалисты кадровых служб крупных компаний, а также служб безопасности.
На основе анализа речи можно диагностировать наличие у человека некоторых заболеваний (деменции, депрессии) и склонность к суицидальному поведению. Потребность в установлении характеристик автора текста также растет с развитием интернет-коммуникаций: компаниям важно знать, каким группам лиц нравятся их товары и услуги.
Ученые, работающие в данном направлении (лингвисты, психологи, специалисты по информационным технологиям), на основе численных значений различных параметров текста строят математические модели для диагностирования тех или иных параметров личности.
В ходе исследования они сравнили точность решения задачи гендерной идентификации текстов на основе двух подходов к моделированию на основе данных: с одной стороны, алгоритмы машинного обучения (метод опорных векторов и градиентный бустинг), с другой стороны – нейронные сети глубокого обучения (сверточные нейронные сети и рекуррентные нейронные сети с долгой краткосрочной памятью).
Нейросеть без труда находит подвох в десяти случаях из десяти, притом, что автор намеренно ставит в подписи имя противоположного пола.
Результаты этого исследования показали, что подход, основанный на использовании сверточной нейронной сети и методов глубокого обучения для распознавания пола человека, написавшего текст, является наиболее оптимальным.
Поделитесь с друзьями интересной статьей: